我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的.对于高频杂波,一般我的经验是不要过大的电容,因为我个人觉得,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想.所以电容的选择不是容量越大越好.

  1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器.

  2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致.在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格.

  (1)电阻R与频率无关,系一常数,故为一横线πfL,与频率成正比,故为一斜线)电容抗 与频率成反比,故为一曲线;j(XL?XC)

  ??去耦电容应放置于电源入口处,连线应尽可能短.旁路电容不是理论概念,而是一个常常使用的实用方法,在50--60年代,这个词也就有它特有的含义,现在已不多用.电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件.例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容.后来也有的资料把它引申使用于类似情况.

  我来总结一下,旁路实际上就是给高频干扰提供一个到地的能量释放途径,不同的容值可以针对不一样的频率干扰.所以一般旁路时常用一个大贴片加上一个小贴片并联使用.对于相同容量的电容的Q值我认为会影响旁路时高频干扰释放路径的阻抗,直接影响旁路的效果,对于旁路来说,希望在旁路作用时,电容的等效阻抗越小越好,这样更利于能量的排泄.

  去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.

  旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.

  一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还能够更好的起到局部电荷池的作用,能够大大减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰,在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象.在供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰.

  出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。

  3.谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以fr表示之。

  数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声(亦称开关噪声),形成干扰源.

  (2)受负载电容影响,输出逻辑由“0”转换至“1”时,由于对负载电容的充电而产生瞬态尖峰电流.瞬态尖峰电流可达50ma,动作时间大约几ns至几十ns.

  ????去耦电容取值一般为0.01~0.1uf,频率越高,去耦电容值越小.

  ??旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别.

  分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要最大限度地考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔能够大大减少板层电容,但会增加电感.

  所对应的两旁带频率间之范围,即为该电路之选择性,通常称为频带宽度或波宽,以BW表示。

  (4)当f=f1或f2时,其电路功率为上限功率之半,故截止频率又称为半功率频率。

  根据LC电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低.许多人认为电容器的容值越大,滤波效果越好,这是一种误解.电容越大对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差.表1是不同容量瓷片电容器的自谐振频率,电容的引线mm(你使用的电容的引线电容值自谐振频率(MHz)电容值自谐振频率(MHz)1mF1.7820pF38.50.1mF4680pF42.50.01mF12.6560pF453300pF19.3470pF491800pF25.5390pF541100pF33330pF60尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的.当要滤除的噪声频率确定时,能够最终靠调整电容的容量,使谐振点刚好落在骚扰频率上.

  1.以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是不是正确.或者推荐一个网页或者网站.

  2.是不是超过了谐振频率,其阻抗将大幅度提升,所以对高频的过滤信号,其作用就相对减小了呢?

  4.以前只知道电容的旁路作用是隔直通交,现在具体于PCB设计中,电容的这一旁路作用具体体现在哪里?

  (2)R-L-C串联电路欲产生谐振时,可调整电源频率f、电感器L或电容器C

  使其达到谐振频率fr,而与电阻R完全无关。Байду номын сангаас

  (3)品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100之

  在用电容抑制电磁骚扰时,最容易忽视的问题是电容引线对滤波效果的影响.电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用.然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策.出现这样一种情况的一个原因是忽略了电容引线对旁路效果的影响.??实际电容器的电路模型是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络.理想电容的阻抗是随频率的升高降低,而实际电容的阻抗是图1所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR.在谐振点以上,由于ESL的作用,电容阻抗随频率的升高而增加,这是电容呈现电感的阻抗特性.在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失.??电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差.ESL除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低.因此在实际工程中,要使电容器的引线尽量短.

  (2)当f=f1或f2时,??? ?????,此频率称为旁带频率、截止频率或半功率频率。

  串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大.

  1.谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释

  去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.

  旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.

  从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于一般的情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合.

  去耦和旁路都可以看作滤波.正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波.具体容值能够准确的通过电流的大小、期望的纹波大小、作用时间的大小来计算.去耦电容一般都很大,对更高频率的噪声,基本无效.旁路电容就是针对高频来的,也是利用了电容的频率阻抗特性.电容一般都可以看成一个RLC串联模型.在某个频率,会发生谐振,此时电容的阻抗就等于其ESR.如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线.具体曲线与电容的介质有关,所以最终选择旁路电容还应该要考虑电容的介质,一个比较保险的方法就是多并几个电容.

  (6)若将电源频率f由小增大,则电路电流I的变化为先增后减,而质量因子Q

  (7)当频带宽度BW很宽,表示质量因子Q值很低;若Q<10时,上列公式不

  从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于一般的情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合.

上一篇:串联谐振计算公式

下一篇:【48812】手机能跑百亿参数大模型骁龙8Gen3来了自研PC架构上线